
CHAPTER 8 
SHEAR CENTER FOR THIN-WML 
BEAM CROSS SECTIONS 

n 
H s  defined in Chapter 7, the shear center is a point in the cross section of a 

beam through which the plane of loads must pass for the beam to be subjected to only 
bending and shear. No torsion is caused by transverse loads that act through the shear cen- 
ter. Locating the shear center for a beam cross section is a necessary step in the analysis of 
beam under loads that cause bending, shear, and possibly torsion. For a general cross sec- 
tion, the theory of elasticity may be used to locate the shear center (Boresi and Chong, 
2000). However, in this chapter we use the methods of mechanics of materials to develop an 
approximate solution for the location of the shear center for thin-wall beam cross sections. 

8. I APPROXIMATIONS FOR SHEAR IN THIN-WALL 
BEAM CROSS SECTIONS 

For a beam with a cross section that possess two or more axes of symmetry or antisymmetry, 
the bending axis is the same as the longitudinal centroidal axis, because for each cross sec- 
tion the shear center and centroid coincide. However, for cross sections with only one axis of 
symmetry, the shear center and centroid do not coincide, but both lie on the symmetry axis. 

For example, consider the equal-leg angle section shown in Figure 8.1. Let the beam 
cross section be oriented so that the principal axes of inertia (X, Y) are directed horizontally and 
vertically. When the load P is applied at the centroid 0 of the cross section, the beam bends and 
twists (Figure 8 . 1 ~ ~ ) .  However, the beam bends without twist if it is loaded by a force P that 
passes through the shear center C (Figure 8.lb). As is shown later, the shear center C coincides 
approximately with the intersection of the center lines of the two legs of the angle section. 

To locate the shear center for a thin-wall cross section, we first make simplifying 
assumptions. They may be illustrated by reference to Figure 8.2. In Figure 8.2, the cross 
section shown is that of the beam in Figure 8.lb and is obtained by passing a cutting plane 
perpendicular to the bending axis through the beam. The view shown is obtained by look- 
ing from the support toward the end of the beam at which P is applied. 

For equilibrium of the beam element so obtained, the shear stresses on the cut cross 
section must balance the load P. However, the shear stresses in the cross section are difficult 
to compute exactly. Hence, simplifying approximations are employed. Accordingly, consider 
a portion of the legs of the cross section, shown enlarged in Figure 8.2b. Let axes x-y-z be 
chosen so that the x-y axes are tangent and normal, respectively, to the upper leg, and let the 
z axis be taken perpendicular to the cross section (the plane of Figure 8.2b) and directed pos- 
itively along the axis of the beam from the load P to the support. Then, the shear stress 
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P P 

(a) (b) 

FIGURE 8.1 
es twist and bending. ( b )  Load P applied at point Cproduces bending only. 

Effect of applying load through shear center. (a )  Load P applied at point 0 produc- 

(0) (b) 

FIGURE 8.2 Shear stress distribution in an equal-leg angle section. 

components in the cross section of the beam are o, and oq as shown. Since the shear 
stresses on the lateral surfaces of the beam are zero, oyz = 0. Hence, oq vanishes at BD and 
EF (since oyz = oq; see Eq. 2.4). Since ozy = 0 at BD and EF and the wall thickness between 
BD and EF is small (a thin wall) with respect to the length of the legs of the cross section, we 
assume that oq does not change significantly (remains approximately zero) through the wall. 
The effect of o (the shear stress in the thickness direction) is ignored in the following dis- 
cussion. In addition, it is assumed that the shear stress component o, (along the legs) is 
approximately constant through the wall thickness and is equal to the average tangential 
shear stress z in the wall (Figure 8 .2~) .  With these approximations for oq and a,, we find 
that a reasonably accurate and simple estimate of the shear center location may be obtained. 

'y 

8.2 SHEAR FLOW IN THIN-WALL BEAM CROSS 
SECTIONS 

The average shear stress z at each point in the walls of the beam cross section is assumed 
to have a direction tangent to the wall. The product of this shear stress and the wall thick- 
ness t defines the shearpow q; thus, 

q = zt (8.1) 
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In the equation that will be derived for determining the shear flow q, we assume that the 
beam material remains linearly elastic and that the flexure formula is valid. Hence, we 
assume that the plane of the loads contains the bending axis of the beam and is parallel to 
one of the principal axes of inertia. It is convenient to consider a beam cross section that 
has one axis of symmetry (the x axis in Figure 8.3). If the load P is parallel to the y axis 
and passes through the shear center C”, the x axis is the neutral axis for linearly elastic 
behavior and the flexure formula is valid. The derivation of the formula for q requires that 
both the bending moment M, and total shear Vy be defined; load P is taken in the negative 
y direction so that both M, and Vy are positive. 

We wish to determine the shear flow q at point J in the cross section of the beam in 
Figure 8.3a at a distance z + dz from load P. The free-body diagram necessary to determine 
q is obtained by three cutting planes. Cutting planes 1 and 2 are perpendicular to the z axis 
at distances z and z + dz from the load I? Cutting plane 3 is parallel to the z axis and per- 
pendicular to the lateral surface of the beam at J.  The free body removed by the three cut- 
ting planes is indicated in Figure 8.3b. The normal stress o,, as given by the flexure 
formula acts on the faces made by cutting planes 1 and 2. The resulting forces on these 
faces of area A’ are parallel to the z axis and are indicated in Figure 8.3b as H and H’, 
respectively. Since the forces H and H‘ are unequal in magnitude, equilibrium of forces in 
the z direction is maintained by the force q dz on the face made by cutting plane 3. Therefore, 

q d z  = H ’ - H  (8.2) 

Now, integration of o,, over the faces with area A‘ at sections 1 and 2 yields (with the flex- 
ure formula) 

H = I o z z d A  = j % d A  
A’ A’ ‘ X  

and 

FIGURE 8.3 Shear flow in a beam having a symmetrical cross section. 
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Substituting these two relations into Eq. 8.2 and solving for q yields 

q =  dM,  - - j y d A  1 
dz  I X A ‘  

According to beam theory, the total shear Vy in the cross section of a beam is given by Vy = dM,/dz. 

Also, since Y dA = where 7’ is the distance from the x axis to the centroid of A’, 

we may express q as 
A’ 

V y  A’Y’ 
q = -  

I ,  

Furthermore, since the value of the shear stress z in the longitudinal section cut by plane 3 
(Figure 8.3) is the same as the shear stress in the cross section cut by plane 2, the shear 
flow in the cross section at point J is 

where t is the wall thickness at point J. The first moment of area A’, that is, A’Y: is com- 
monly denoted by Q. 

Equation 8.3 is used to locate the shear center of thin-wall beam cross sections for 
both symmetrical and nonsymmetrical bending. The method is demonstrated in Section 
8.3 for beam cross sections made up of moderately thin walls. 

In many applications (e.g.. girders), the beam cross sections are built up by joining 
stiff longitudinal stringers by thin webs. The webs are generally stiffened at several loca- 
tions along the length of the beam. The shear center location for beams of this type is con- 
sidered in Section 8.4. 

8.3 SHEAR CENTER FOR A CHANNEL SECTION 

A cantilever beam subjected to a bending load V at C’ in a plane perpendicular to the axis 
x of symmetry of the beam is shown in Figure 8.4. We wish to locate the plane of the load 
so that the channel bends without twisting. In other words, we wish to locate the bending 
axis CC‘ of the beam or the shear center C of any cross section AB. 

In Figure 8.4a let V be transformed into a force and couple at section AB by introduc- 
ing, at the shear center C whose location is as yet unknown, two equal and opposite forces 
V’ and V”, each equal in magnitude to V The forces V and V” constitute the external bend- 
ing couple at section AB, which is held in equilibrium by the internal resisting moment at 
section AB in accordance with the flexure formula, Eq. 7.1; the distribution of the normal 
stress 0, on section AB is shown in Figure 8.4a. The force V’ is located at a distance e from 
the center of the web of the channel, as indicated in Figures 8.4a and 8.4b. Force V’ is 
resisted by shear stress z or shear flow q (Eq. 8.3) in cross section AB. Since the shear flow 
is directed along the straight sides of the channel, it produces forces F, ,  F,, and F,, which 
lie in the cross section as indicated in Figure 8.4b. Accordingly, by equilibrium 

CF, = F , - F l  = 0 

CFy = V ‘ - F ,  = 0 

X M A  = V ’ e - F l h  = 0 (8.6) 
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Fixed end 
of cantilever 

beam 

FIGURE 8.4 Shear center for a channel section. (a )  Channel section beam. (b)  Location of C. 
(c) Idealized areas. 

The magnitude of the load V' is assumed to be known. Therefore, the determination of 
the distance e from the center line of the web to the shear center requires only that the 
force Fl  (= F2) be determined. 

To determine F,, it is convenient to think of the beam cross section as made up of 
line segments (Figure 8.4~) with specified thicknesses. Since the forces F , ,  F2, F3 are 
assumed to lie along the center line of the walls, the cross section is idealized as three nar- 
row rectangles of lengths b, h, and b as indicated in Figure 8.4~; note that the actual and 
idealized cross-sectional areas are equal since the three areas overlap. However, the 
moments of inertia of the actual and idealized cross sections differ from each other 
slightly. The moment of inertia of the idealized area is 

I ,  = -twh 1 3  +2b t f (g )  2 +2-btf 1 3  
12 12 

This result may be simplified further by neglecting the third term, since for the usual chan- 
nel section tf is small compared to b or h. Thus, we write 

1 3 1  2 I ,  = -twh + - tf bh 
12 2 

The force Fl may be found from the shear flow equation 

b V b  V t h b  V y  t f  b2h 
F ,  = f q d l  = f 5 A'T'dl = yf Id1 = - 

0 X O  21, 0 41, 

(8.7) 

where q is given by Eq. 8.3. The distance e to the shear center of the channel section is 
determined by substituting Eqs. 8.7 and 8.8 into Eq. 8.6 with the magnitude of V' set equal 
to that of Vy.  Thus, we find 

b 

2+-- 
3 t f b  

e =  
1 twh 

(8.9) 
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Because of the assumptions employed and approximations used, Eq. 8.9 gives only 
an approximate location of the shear center for channel sections. However, the error is 
small for thin-wall sections. The approximate locations of the shear center for several 
other thin-wall sections with an axis of symmetry are given in Table 8.1. 

TABLE 8.1 Locations of Shear Centers for Sections Having One Axis of Symmetry 

t 
Figure A 

- 
b 

t 
t 

Figure B 

- 
b h 26, 2b, 4b: 

2 + 3b - + -[ b 1 - + ;;;z) 

*f 

Figure C 

1 - ,  b: 

b l < b  
bL e -  - -  

b 2b, twh' 
2 + - + -  

b 3t,b 

\go" . 
Figure D 

b: 2b +$) h b  
e -  
b 3b1 3b: bi 

1 + - - - + -  
b2 b3 

- -  

a e 4  For semicircle, e = - and - = - 
2 R a  

Figure E 

R 
e -  
R 3 a +  1 2 - + 4 g ) 2 ( 3 + : )  b + b l  
- -  

R R 
i 

Figure F 
Forb, = 0:  Forb = 0:  

4 + 272; + 2[;)2 

b a + 4 -  
R 

e =  - 
R 

- e =  
R 



EXAMPLE 8.1 
Shear Center for 

Channel with 
Sloping Flanges 

Solution 

8.3 SHEAR CENTER FOR A CHANNEL SECTION 301 

A 4-mm thick plate of steel is formed into the cross section shown in Figure E 8 . l ~ .  Locate the shear 
center for the cross section. 

1 

(a)  

FIGURE E8.1 

p 2 r = 8 m m  

rn 

100 mm 

For simplicity in finding the moment of inertia, we approximate the actual cross section (Figure 
E8.14 by the cross section shown in Figure E8.lb. The moment of inertia about the x axis for the 
cross section in Figure E8.lb closely approximates that for the actual cross section in Figure E8.la 
and is 

After finding I, we make no further use of Figure E8.lb. Because of the shear flow, forces F ,  and F2 
are developed in the three legs of the cross section. The magnitude of force F ,  requires integration; 
therefore, it is convenient to take moments about point D so that F ,  is not required. Since the shear 
flow from A to B to A varies parabolically, the average shear flow is equal to the shear flow at A plus 
1 of the difference between the shear flow at B and shear flow at A. Thus, 
3 

V V V 44 = -A'B = -(100)(4)(125) = 50,000 - 
I ,  I ,  I ,  

I ,  I ,  
V V 48 = q A  + -(100)(4)(50) = 70,000 - 
2 V 

qaVe = 4 + - ( q B - q A )  = 63,330- 
A 3  I ,  

V V F ,  = 200q, = 63,330 - (200) = 12,670,000 - 
I ,  I ,  

With point D as the moment center, the clockwise moment of V must equal the counterclockwise 
moment of F,. Thus, we have (173.2 - e) V = 173.2 F2, and hence e = 30.1 mm. 
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100 t mm 

J. 
X 

EXAMPLE 8.2 
Shear Center for 

Unequal-Leg 
Channel 

‘7 
t = 4 m m  

0 

Solution 

A beam has a nonsymmetrical section whose shape and dimensions are shown in Figure E8.2a. 
Locate the shear center. 

FIGURE E8.2 

Centroidal x and y axes are chosen to be parallel to the sides of the thin-wall legs of the cross section. 
The origin 0 of the coordinates’ axes is located at x, = 25 mm and yo = 40 mm. To apply the theory 
to nonsymmetrical sections, we use principal axes X-k: As indicated in Appendix B, the orientation of 
the principal axes may be described in terms of I,, Iy, and Ixy. These values are I, = 1.734 Y lo6 mm4, 
Iy = 0.876 Y lo6 mm4, and Zxy = -0.500 Y lo6 mm4. The angle 8 between the x axis and X axis is 
obtained by the relation (Eq. B.12) 

21,Y - -2(-0.500 x lo6) = tan213 = 
I ,  - ‘ y  1.734 x lo6 - 0.876 x lo6 

from which 8 = 0.4308 rad. Since 8 is positive, the X axis is located counterclockwise from the x 
axis. By using the equations in Appendix B, we find the principal moments of inertia to be I, = 
1.964 Y lo6 mm4 and I ,  = 0.646 Y lo6 mm4. The principal axes are shown in Figures E8.B and E8.k. 

The shear center C is located by considering two separate cases of loading (without twisting) in 
two orthogonal planes of the loads. The intersection of these two planes of loads determines the shear 
center C. Thus, assume that the resultant V; of unbalanced loads on one side of the section in Figure 
E8.2b is parallel to the Y axis. Since V; is assumed to pass through the shear center, the beam bends 
without twisting and the X axis is the neutral axis; hence, the flexure formula and Eq. 8.3 apply. 
Because of the shear flow, forces F, ,  F2, and F3 are developed in the three legs of the cross section 
(Figure E8.2b). Only the magnitude of F3 is required if point D is chosen as the moment center. To 
determine F3, it is necessary that the shear flow q be determined as a function of I, the distance from 
point B. The coordinates of point B, the shear flow q, and force F3 are determined as follows: 

X, = x,co~8+y,sin8 = -25(0.9086)-60(0.4176) = -47.77 mm 

Y, = y,cos8-xBsin8 = -60(0.9086) + 25(0.4176) = -44.08 mm 

2 
50 V,t 50 

0 I ,  0 
F ,  = I q  dl = - I l(44.08 + 

Using the fact that V; = V ,  (the total shear at the section), we obtain the distance ex from point D to 
force V i ,  which passes through the shear center, from the equilibrium moment equation. Therefore, 



8.4 SHEAR CENTER OF COMPOSITE BEAMS FORMED FROM STRINGERS AND THIN WEBS 303 

V y e x  = 100F, I 
I Or 

ex = 12.99mm 

Next assume that the resultant of the unbalanced loads on one side of the section in Figure E 8 . 2  
is V$ and it is parallel to the X axis. Since V$ is assumed to pass through the shear center, the beam 
bends without twisting and the Y axis is the neutral axis. The shear flow q and force F3 are given by I 

VX 
IY I ,  

q = - A’x’ = 2 tl 
50 

F ,  = J q d l  = - 
0 

Set V i  = V, (the total shear at the section) and take moments about point D. Therefore, 

V x e y  = 100F, 

ey = 25.25mm 

In terms of principal coordinates, the shear center C is located at 

X, = xDcosO+yDsin6+ex = 52.41 mm 

Y, = yDcos6-xDsin6-ey = 0.66- 

The x and y coordinates of the shear center C are 

xc = Xccos6 - Ycsin6 = 47.35 mm 

yc = Yccos6 + Xcsin6 = 22.49 mm 

8.4 SHEAR CENTER OF COMPOSITE BEAMS FORMED 
FROM STRINGERS AND THIN WEBS 

Often, particularly in the aircraft industry, beams are built up by welding or riveting longi- 
tudinal stiffeners, called stringers, to thin webs. Such beams are often designed to carry 
large bending loads and small shear loads. Tko examples of cross sections of such beams 
are shown in Figure 8.5. A beam whose cross section consists of two T-section stringers 

(a ) (6) 

FIGURE 8.5 Beam cross sections built up of stringers and thin webs. 
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EXAMPLE 8.3 
Shear Center for 

Composite Beam 

Solution 

joined to a semicircular web is shown in Figure 8Sa, and a beam whose cross section con- 
sists of a vertical web joined to two angle-section stringers that, in turn, are joined to two 
horizontal webs that support two T-section stringers is shown in Figure 8.5b. 

The calculation of the shear center location for beam cross sections similar to those 
shown in Figure 8.5 is based on two simplifying assumptions: 1. that the web does not 
support tensile or compressive stresses resulting from bending loads and 2.  that the shear 
flow is constant in a web between pairs of transverse stiffners. The actual webs of these 
composite beams are often so thin that they may buckle under small compressive stresses. 
Therefore, the webs should not be expected to carry compressive flexure stresses. In gen- 
eral, the webs can carry tensile flexure stresses. However, this capability is sometimes 
ignored in their design. 

Since the web walls are usually very thin, the moment of inertia for symmetrical 
cross sections of composite beams is approximated by the relation 

n 
(8.10) I ,  = 2 x A i y i  2 

i =  1 

where 2n is the number of stringers, Aj  is the cross-sectional area of the stringer on one 
side of the neutral axis (x axis), and yi  is the distance from the neutral axis to the centroid 
of the area Ai. Equation 8.10 discards the effect of the web. Hence I ,  is underestimated. 
With this value of Zx, the computed flexure stresses are overestimated (higher than the true 
stresses). 

Note: Transverse shear stresses are developed in the area A j  of each stringer so that the 
stringer carries part of the total shear load Vy applied to the beam. However, the part of Vy 
carried by each stringer is usually ignored. This error is corrected in part by assuming that 
each web is extended to the centroid of the area of each stringer, thus increasing the contri- 
bution of the web. The procedure is demonstrated in the following example. 

A composite beam has a symmetrical cross section as shown in Figure E8.3. A vertical web with a 
thickness of 2 mm is riveted to two square stringers. TWO horizontal webs, with a thickness of 1 mm, are 
riveted to the square stringers and the T-section stringers. Locate the shear center of the cross section. 

The centroid of each T-section is located 9.67 mm from its base. The distance from the x axis to the 
centroid of each T-section is 

y2 = 100 + 10 + 1 + 9.67 = 120.67 mm 

The approximate value of I ,  (Eq. 8.10) is 

I ,  = 2Al$ + 2A2$ = 2(4OO)( + 2(324)( 120.67), 
= 17.44 x lo6 mm4 

In these calculations, the shear flow q1 is assumed to be constant from the centroid of the T-section 
to the centroid of the square stringers. The magnitude of q, is (Eq. 8.3) 

V V 3v 

1, 1, 1, 
q1 = LA’T’ = 2(324)(120.67) = 39.10~ 10 2 

where Vy is the total shear at the section. The forces F , ,  F,, and F3 are given by the relations 
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(Applied 

FIGURE E8.3 

F,  = (9.67+0.5)q, = 397.6X10 3vy - 
I X  

g V  F2 = 60q, = 2 . 3 4 6 ~  10 2 
1, 

F3 = (10+0.5)ql = 410.5 x 10 3% - 
1, 

The shear flow q2 is also assumed to be constant between centroids of the square stringers. Hence, 

V 
q2 = q1 + 2(400)(100) = 7 9 . 1 0 ~  LO3% 

I X  I X  

The forces F4 and F, are given by the relations 

F, = ( lo+ l)q, = 870.1 x 10 3v 2 
I X  

These forces with V' (Figure E8.3) must satisfy equilibrium in they direction; that is, 

zFy = V'-2F,-2F,-F5 = 0 

Hence, 

2(397.6 x 103Vy) + 2(410.5 x 103Vy) + 15.82 x 10% 

17.44 x lo6 

Thus, the applied shear load V' is equal to the total internal shear Vy in the section. The moment equi- 
librium equation for moments about point B determines the shear center location. Thus, 

V' = y = vy 
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x M B  = V’e+2F1(71)+2F3(11)-F2(221)-F,(200) = 0 

e = [2.346 x 106(221) + 870.1 x 103(200)-2(397.6 x 103)(71) 

- 2(410.5 x lo3)( 11)]/( 17.44 x lo6) 
e = 35.95 mm 

This estimate of the location of the shear center C (Figure E8.3) may be in error by several percent 
because of the simplifying assumptions. Hence, if the transverse bending loads are placed at C, they 
may introduce a small torque load in addition to bending loads. In most applications, the shear 
stresses resulting from this small torque are relatively insignificant. In addition, it is questionable that 
the beam can be manufactured to such precise dimensions and that the loads can be placed with great 
accuracy. Thus, the need for greater accuracy in our computations is also questionable. 

8.5 SHEAR CENTER OF BOX BEAMS 

Another class of practical beams is the box beam (with boxlike cross section) (Figure 8.6). 
Box beams ordinarily have thin walls. However, the walls are usually sufficiently thick so 
that they will not buckle when subjected to elastic compressive stresses developed by 
bending. Box beams may be composed of several legs of different thickness (Figure 8.6) 
or they may be a composite of longitudinal stringers and very thin webs (Figure 8.7). The 
beams in Figures 8.6 and 8.7 are one-compartment box beams. In general, box beams may 
contain two or more compartments. 

For convenience, let the x axis be an axis of symmetry in Figures 8.6 and 8.7. Let the 
beams be subjected to symmetrical bending. Hence, let the plane of the loads be parallel to 
the y axis and let it contain the shear center C. The determination of the location of the 
shear center requires that the shear stress distribution in the cross section be known. How- 
ever, the shear stress distribution cannot be obtained using Eq. 8.3 alone, since area A’ is 
not known. (A’ is the area of the wall from a point of interest in the wall to a point in the 
wall where q = 0.) Consequently, an additional equation, specifically Eq. 6.67, is required 
to obtain the shear stress distribution for a cross section of a box beam. Since there is no 
twisting, the unit angle of twist in the beam is zero and hence Eq. 6.67 yields 

+ b 4  x-T 
f l  4 f3 

(a)  

FIGURE 8.6 Box beam. 

Shear center 
for left beam 

R 

A 

Shear center 
for right beam 
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(a) 

FIGURE 8.7 Ultra-thin-wall box beam with stringers. 

1 
1 ; d l  = 0 
0 

Shear center 
for right beam -I (b)  

(8.11) 

where dl is an infinitesimal length of the wall of the box beam cross section at a point 
where the thickness is t and the shear flow is q. The length 1 of the perimeter of the box 
beam cross section is measured counterclockwise from any convenient point in the wall. 

The shear flow q A  at any point, say point A in Figure 8.6 or 8.7, is an unknown. If this 
shear flow is subtracted from the actual shear flow at every point of the box beam wall, the 
resulting shear flow at A (and, in this case, at B because of symmetry) is zero. We refer to such 
a point (of zero shear flow) as a cut. Then the resulting shear flow is the same as if the two 
beams (Figures 8.6b and 8.7b) have no shear resistance at points A and B but still have continu- 
ity of displacement at points A and B. Since the subtraction of qA results in a subtraction of a 
zero force resultant, the subtraction produces no additional horizontal or vertical components 
of load on the cross section. The portions Vj1, Vt2 of the shear load V‘ acting on each of the two 
parts AB and BA (Figures 8.6b and 8.7b) are proportional to the moments of inertia of the two 
parts of the beam because the curvature of the two parts must be continuous at points A and B. 
For convenience, let V’ = Z (in magnitude) so that Vtl = I ,  and V’, = Z,. Then, the shear flow at 
any point in the wall of either of the two parts of the beams (Figure 8.6b) can be obtained using 
Eq. 8.3. The shear flow qA is then added to the resulting shear flows for the two parts of the 
beam. The magnitude of q A  is obtained by satisfying Eq. 8.11. The force in each wall of the 
cross section can then be determined. The location of the shear center is obtained from the fact 
that the moment of these forces about any point in the plane of the cross section must be equal 
to the moment of the applied shear load V’ about the same point. 

For beams whose cross sections contain more than one compartment (Figure 8.8), 
this procedure must be repeated for a point in the wall of each compartment, such as at A,  
B, C ,  and D in Figure 8.8b or at A,  B, C ,  D ,  E ,  and F in Figure 8.8~. The magnitudes of the 
shear flows that must be subtracted for each compartment are obtained by satisfying Eq. 
8.1 1 for each compartment. 

Nonsymmetrical box beam cross sections can also be treated by this procedure. In 
this case, it is desirable to refer the calculation to principal axes, say, X-Y; The method pro- 
ceeds as follows: First, locate the plane of the loads for bending about the X axis; second, 
locate the plane of the loads for bending about the Y axis. The shear center of the cross 
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EXAMPLE 8.4 
Shear Center for 

Box Beam 

Solution 

FIGURE 8.8 Multicompartment box beam. 

section is given by the intersection of these two planes. The bending axis intersects each 
cross section of the box beam at the shear center. 

For the box beam in Figure 8.6, let b = 300 mm, h = 500 mm, t ,  = 20 mm, and t2 = t3 = 10 mm. Deter- 
mine the location of the shear center for the cross section. 

The moment of inertia for the x axis is Z, = 687.5 x lo6 mm4. Cuts are taken at points A and B to 
divide the beam into two parts (Figure 8.6b). For convenience, let the magnitude of the shear load 
V'[N] for the box beam be equal to the magnitude of I,  so that V ;  = Ix l  and V ;  = Zx2. The shear flow 
q is determined at points P, Q (the midpoint of PR), and S (the midpoint of AB) for the two parts of 
the cut beam cross section (Figure 8.6b) as follows (with V ;  = V,, V ;  = V2): 

Vl A'T' 
q p = - -  - (bt2) 5 = 300(10)(250) = 750.0 kN/mm 

I ,  1 

qQ = qp + (2 t l )  = 1,375.0 kN/mm 

qs = (g t 3 )$  = 312.5 kN/mm 

The senses of the shear flows oppose those of V ;  and V ;  . For the left part of the beam (Figure 
E8.4a), the shear flow increases linearly from zero at B to qp at R and decreases linearly from qp at P 
to zero at A. The shear flow changes parabolically from qp at R to qQ at Q and back to qp at P. For the 
right of the beam, the shear flow changes parabolically from zero at B to qs at S and back to zero at A. 
Now, we add qA (assumed positive in a counterclockwise direction) to the value of q at every point in 
the cross section (Figure E8.4b), and we require that Eq. 8.1 1 be satisfied. Starting at P, we find that 

2 0 = q A - q p - - ( q  - q p )  [ 3 Q  

qA = 305.6kN/mm 
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(a) 

FIGURE E8.4 

This value of qA must be added to the values computed for the cross section with the cuts to give the 
shear flow (Figure E8.4b). The equilibrium equation for moments about point B gives 

4444 
2 (500)(300) - -( 177.76)(500) 

305.6 
2 

+ -( 122.24)(5OO) 

139.57 x lo9 N mm 

687.5 x lo6 N 
= 203 mm e =  

The shear center C lies on the x axis at a point 203 mm to the left of the center line of the right leg of 
the box section. We can check the result by noting that, by Figures 8.6b and E8.4b, 

vl = [ q p - q A + ? ( q Q - q p ) ] ( 5 0 0 )  2 

1 = p50.0 - 305.6 + 2 -( 1375.0 - 750.0) (500) 
3 

= 430,533kN 

= [305.6+:(312.5) 2 3  (500) 

= 256,967kN 

or 

~ 

V ,  +V2 = 687,500kN = V 
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EXAMPLE 8.5 
Shear Center 

for a 
Muititwmpartmem 

Box Beam 

Solution 

For the box beam shown in Figure E8.5a, determine the location of the shear center for the cross sec- 
tion. Let a = b = 500 mm, t ,  = 5 mm, t ,  = 10 mm, and t3 = 20 mm. 

9C 9 A  

Shear center for 
right section 

vertical member 

FIGURE E8.5 

A . J  

E. F 

The moment of inertia about the x axis is 1, = 2343.75 x lo6 mm4. Cuts are taken to the left and right 
of the internal vertical member (Figure E8.5b). For convenience, let the magnitude of the shear load V 
for the box beam be equal to the magnitude of lx, so that V’l = Ix1,  V’, = lx2, and V’, = lx3. The shear 
flow for each part of the cut beam cross section (Figure E8.5b) is determined as follows (with V’, = 
V,, V‘, = V,, and V‘3 = V3): 
For the left section, 

qc = qB + (“t ) = 1406.25 kN/mm 
2 1  4 

For the internal vertical member, 
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V2 A'Y' 
qs = - = (ft3)f = 625 k N / m  

1x2 

For the right section, 

V3 A'L' a qG = - = (2bt2)- = 2500 k N / m  

qH = qc+( f t  )?  = 3125 kN/mm 

1x3 2 

2 3  4 

The senses of the shear flows oppose those of V $  , V.$ , and V$ . For the left section (Figure E8.5c), 
the shear flow increases linearly from zero at E to q B  at D and decreases linearly from q B  to zero at A. 
The shear flow changes parabolically from q B  at D to qc at C and back to q B  at B. For the internal ver- 
tical member, the shear flow changes parabolically from zero at E (or F) to qs at S and back to zero at 
A (or J ) .  The corresponding shear flows for the right section are shown in Figure E8.5~.  

Next we add qA to every point in the left cross section and qF to every point in the right cross sec- 
tion, including the vertical internal member (Figure E8.54. We require that Eq. 8.1 1 be satisfied for 
both the left and right sections. 

For the left-hand section starting at point B, we find by Figure E8.5c 

Similarly for the right-hand compartment, we have starting at point I 

Inserting numerical values in Eqs. (a) and (b), we obtain 
9qA + qF = 7500 

qA + lOq, = 12,000 

The solution of Eqs. (c) is 
qA = 702.3 kN/mm 

qF = 1179.8 k N / m  

The shear flow distribution is shown in Figure E8.5d. 

J) gives 
The equilibrium equation for moments about point E (points E and F coincide, as do points A and 
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Substitution for the shear flows and V = 2,343,750 kN yields 

759,894,167 kN mm = 324.2 mm e =  
2,343,750 kN 

Hence, the shear center is located 324.2 mm to the right of the internal vertical member (Figure 
E8.5d ) . 

As a check, note that by Figure E8.5d, 

(500) = 325,960m 

V ,  = (qa+qF+,qs)(500) 2 = 1,149,350kN 

(500) = 8687440kN 

or 

V ,  + V ,  + V ,  = 2,343,750 kN 

PROBLEMS 

Section 8.3 
8.1. Locate the shear center for the hat section beam shown in 
Figure A of Table 8.1 by deriving the expression for e. 
8.2. Verify the relation fore for the cross section shown in Fig- 
ure B of Table 8.1. 
8.3. Locate the shear center for the nonsymmetrical I-beam 
shown in Figure C of Table 8.1 by deriving the expression for e. 
8.4. Show that the shear center for the cross section in Figure D 
of Table 8.1 is located at distance e as shown. 
8.5. Derive the relation for e for the circular arc cross section 
shown in Figure E of Table 8.1. 
8.6. Derive the relation fore for the helmet cross section shown 
in Figure F of Table 8.1 
8.7. An extruded bar of aluminum alloy has the cross section 
shown in Figure P8.7. Locate the shear center for the cross 
section. Note: Small differences in the value of e may occur 
because of differences in the approximations of I,. 
8.8. A 2.50-mm-thick plate of steel is formed into the cross sec- 
tion shown in Figure P8.8. Locate the shear center for the cross 
section. 
8.9. A rolled steel channel has the dimensions shown in Figure 
P8.9. Locate the shear center for the cross section. 
8.10. A beam has the cross section shown in Figure P8.10. 
Locate the shear center for the cross section. Express your 
answer relative to principal axes. 

p - 4 0  mm- 

r = 3 m m  40 mm 

C 

+e+I 
X 

V 
V 

Y 

FIGURE P8.7 

I 

8.11. An extruded bar of aluminum alloy has the cross section 
shown in Figure P8.11. Locate the shear center for the cross 
section. 
8.12. A 4-mm-thick plate of steel is formed into the cross sec- 
tion shown in Figure P8.12. Locate the shear center for the 
cross section. 
8.13. A 5-mm-thick plate of steel is formed into the cross sec- 
tion shown in Figure P8.13. Locate the shear center for the 
cross section. 
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20 mm 

c o  
X + e  

vv 
+ 
t- 

+ 

I 

3 m m  

30 mm 

t- 

-3mm 
3 mm 

A, * 

FIGURE P8.8 

50 mm 

C 
X 

--t e 

V 
V 

I 
H 
25 mm 

0 

tc 

1 

FIGURE P8.9 

200 mm 
-+ 

r C  
X 

-+ e 

V 
V 

FIGURE P8.10 

I 

13.5 mm 

+14.5 mm 

YI 

FIGURE P8.11 

2 5 m m T  r 5 0 m m Y  

YI 

FIGURE P8.12 

1 - 1 2 0  m m y  

5 m m  Y I  

FIGURE P8.13 
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8.14. A 5-mm-thick plate of steel is formed into the semicircu- 
lar shape shown in Figure P8.14. Locate the shear center for the 
cross section. 

FIGURE P8.17 

p-50 m m q  

Y I  

FIGURE P8.14 

8.15. The horizontal top-most and bottom-most arms of the 
extruded bar of Figure P8.7 are removed. Locate the shear cen- 
ter for the modified section. 
8.16. An aluminum alloy extrusion has the cross section shown 
in Figure P8.16. The member is to be used as a beam with the x 
axis as the neutral axis. Locate the shear center for the cross 
section. 

50 rnm 
-70 mm+ 

Y I  

FIGURE P8.16 

8.17. Locate the shear center for the beam cross section shown 
in Figure P8.17. Both flanges and the web have thickness t = 
3.00 mm. 
8.18. Locate the shear center for the beam cross section shown 
in Figure P8.18. The walls of the cross section have constant 
thickness t = 2.50 mm. 

- 
X 

FIGURE P8.18 

8.19. Locate the shear center for the beam cross section shown 
in Figure P8.19. The walls of the cross section have constant 
thickness t = 2.00 mm. 

r g m  

FIGURE P8.19 

8.20. Locate the shear center for the beam cross section shown 
in Figure P8.20. The walls of the cross section have constant 
thickness t = 2.00 mm. 

p 2 5  m m q  

FIGURE P8.20 
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8.21. Locate the shear center for the beam cross section shown 
in Figure P8.21. The walls of the cross section have constant 
thickness t = 2.00 mm. 

p-25 m m y  

FIGURE P8.21 

8.22. Locate the shear center for the beam cross section shown 
in Figure P8.22. The walls of the cross section have constant 
thickness t = 2.00 mm. 

80 r n m q  60 mm 

160 mm 

FIGURE P8.22 

r 4 0  mm R j m  
FIGURE P8.23 

y l  

4tL 
FIGURE P8.24 

8.23. Locate the shear center for the beam cross section shown 
in Figure P8.23. The walls of the cross section have constant 
thickness t = 2.50 mm. 
8.24. For the beam cross section shown in Figure P8.24, b >> t. 
Show that the moment of inertia I, = 5.609b3t and locate the 
shear center for the cross section. 
8.25. The channel shown in Figure P8.25 is subjected to non- 
symmetric bending. The associated shear forces, which act 
through the shear center, are V, = -2400 N and Vy = 1800 N. 
Determine the distribution of the shear stress throughout the 
cross section. Make a sketch, to scale, of the shear stress distri- 
bution in the channel walls. 

p8.25 

2.5 mm 

100 mm 

50 m m a  

Section 8.4 

8.26. A beam is built up of a thin steel sheet of thickness t = 
0.60 mm bent into a semicircle as shown in Figure P8.26. ' b o  
25-mm square stringers are welded to the thin web as shown. 
Locate the shear center for the cross section. 
8.27. A beam has a symmetrical cross section (Figure P8.27). A 
vertical web with a thickness of 0.60 mm is welded to two 
20 mm by 20 mm by 4 mm angle-section (A = 146 mm2 and 

centroid location 6.4 mm) stringers. The two horizontal webs 
have a thickness of 0.60 mm and are welded to the angle sec- 
tions and 20 mm by 20 mm by 4 mm T-section stringers. Locate 
the shear center for the cross section. 
8.28. A composite beam has a symmetrical cross section as 
shown in Figure P8.28. A vertical web with a thickness of 
2 nun is welded to the center of the flange of two 50 mm by 
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c 
+ e  

X 

V Y  

FIGURE P8.26 

220 mm 

O y  

+ 

L-l  

- 

t = 0.6 mm-+ 

C 
X 

+ e +  
V Y  

FIGURE P8.27 

+- 
55 mm + 

60mm by 10 mm T-section stringers. Two horizontal webs, 
with a thickness of 1 mm, are welded to these stringers and to 
two additional T-section stringers. Locate the shear center of 
the cross section. 
8.29. A composite beam has a symmetrical cross section as 
shown in Figure P8.29. A vertical web with a thickness of 2 mm 
is riveted to four rolled 30 mm by 30 mm by 5 mm angle sec- 

Section 8.5 

8.30. For the box beam in Figure 8.6, let b = 100 mm, h = 
200 mm, t ,  = 20 mm, t2 = 10 mm, and t3 = 5 mm. Determine 
the location of the shear center for the cross section. 
8.31. For the box beam in Figure 8.7, let b = 200 mm, h = 
400 mm, t l  = t2 = t3 = 1 mm, and A ,  = 3A2 = 900 m2. Deter- 
mine the location of the shear center for the cross section. 

FIGURE P8.28 

tions (A = 278 mm2 and centroid location 7.7 mm). Two hori- 
zontal webs, with thickness of 1 mm, are riveted to the angles 
and to areas A ,  (25 mm by 25 mm) and A,  (40 mm by 40 mm). 
Locate the shear center of the cross section. 

150mm * 
FIGURE P8.29 

8.32. Let t ,  = 2 mm with other dimensions from Problem 8.31 
remaining unchanged. Determine the location of the shear 
center. 
8.33. A thin-wall box beam with the cross section shown in Fig- 
ure P8.33 is used in the support structure of an airplane wing. 
Locate its shear center for the case L,  = L2 = L3 = L and t l  = t2 = 
t3 = t. 
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FIGURE P8.33 

- 
X 

YI 

FIGURE P8.38 
8.34. Determine the shear center location for the airplane wing 
box beam in Figure P8.33 for the case L,  = L, Lz = L3 = lSL,  
tl = t, and t2 = t3 = a t .  
8.35. Determine the shear center location for the airplane wing 

8.39. Locate the shear center C for the aircraft box beam whose 
cross section is shown in Figure P8.39. 

box beam in Figure P8.33 for the caseLl = L, = L3 = 0.5 m, tl  = 
20 111111, and tz = t3 = 15 mm. 
8.36. Determine the shear center location C for an aircraft semi- 
circular box beam whose cross section is shown in Figure 
P8.36. 

- 
X 

5 

YI 

FIGURE P8.30 

8.37. Determine the shear center C for an aircraft box beam 
whose cross section is shown in Figure P8.37. 

250 mm 

YI 

FIGURE P8.37 

8.38. Locate the shear center C for the aircraft box beam whose 
cross section is shown in Figure P8.38. 

25 mm- 

25 m m E  

- 
X 

FIGURE P8.39 

mm+ 

8.40. An aircraft box beam is built up of two thin steel sheets of 
thickness t = 0.60 mm, one bent into a semicircle of radius 
60 mm and one a straight member of length 120 mm (Figure 
P8.40). Two 25-mm square stringers are welded to the sheets as 
shown. Locate the shear center C of the cross section. 

n 

u 25mm 

2 5 m m J  

FIGURE P8.40 
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t 
5 m m  6 m m  

C +’jr V 
mm+ 

+ + 
I +  

8.41. An aircraft box beam has a symmetrical cross section 
(Figure P8.41). It consists of two vertical webs and two hori- 
zontal flanges, each of thickness 0.60 mm, two 20 mm by 
20 mm by 4 mm angle-section stringers (A = 146 mm2 and cen- 
troid located 6.4 mm from the outside face of the angle leg), 
and two 20-mm-wide by 20-mm-deep by 4-mm-thick T-section 
stringers. Locate the shear center C of the cross section. 

+t 

50 mm 
+ 6 m m  1 

FIGURE P8.41 

8.42. An aircraft box beam has a symmetrical cross section as 
shown in Figure P8.42. It consists of two 2-mm-thick vertical 
webs, two 1-mm-thick horizontal flanges, two 20 mm square 
stringers, and two 30 mm by 30 mm by 6 mm T-section string- 
ers. Locate the shear center C of the cross section. 

FIGURE P8.42 

REFERENCE 

8.43. Locate the shear center C for the multicompartment box 
beam whose cross section is shown in Figure P8.43. 

FIGURE P8.43 

8.44. Locate the shear center C for the multicompartment box 
beam whose cross section is shown in Figure P8.44. 

- 
X 

FIGURE P8.44 

8.45. Locate the shear center C for the aircraft box beam whose 
cross section is shown in Figure P8.45. 

- 
X 

5 

5 m m  6 m m  

FIGURE P8.45 
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